International Journal of Engineering, Science and Mathematics

Vol. 10 Issue 6, June 2021,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

INVOLUTIONS IN BANACH ALGEBRA

Dr. G. B. Lamb

Associate Professor Baliram Patil College, Kinwat Dist.Nanded (M.S.)

ABSTRACT: In this paper, we define some definition related to involution, examples, Gelfand Nahnark Theorem has important role.

1.INTRODUCTION: Involution has important role in Banach algebra. In this paper we discuss self adjoint, hermitian, Banach algebra corollary, Gelfand Nahnark Thoeorem, isometry and isomorphism studied.

2.Definition :A map $x \to x^*$ of a complex algebra A into A is called an involution of A if it has the following properties for all $x, y \in A$ and $\lambda \in C$.

$$(1) (x+y)^* = x^* + y^*$$

$$(2) (\lambda x)^* = \overline{\lambda} x^*$$

$$(3) (xy)^* = y^*x^*$$

$$(4) x^{**} = x$$

2.1.Definition: If $x \in A$ and $x^* = x$, then x is called hermitian or self adjoint.

Example : $f \to \overline{f}$ is an involution on C(X)

- **2.1.Theorem :**If A is a Banach algebra with an involution, and if $x \in A$, then
 - a) $x + x^*$, $i(x x^*)$ and xx^* are hermitian.
 - b) x has a unique representation x = u+iv where $u, v \in A$ and u and v are hermitian.
 - c) The unit element e is hermitian
 - d) x is invertible in A if and only if x^* is invertible in which case $(x^*)^{-1} = (x^{-1})^*$ and

e) $\lambda \in \sigma(x)$ iff $\bar{\lambda} \in \sigma(x^*)$

Proof: $(x + x^*) = x^* + x^{**} = x^* x = x + x^*$. Hence $x + x^*$ is hermitian.

$$[i(x-x^*)]^* = \overline{i}(x-x^*)^* = -i[x^*-(x^*)^*] = -i(x^*-x) = i(x-x^*)$$

 $(xx^*)^* = (x^*)^* \cdot x^* = x \cdot x^*$. Hence $i(x-x)^*$ and x^* are hermitian.

a) Put $u = \frac{x + x^*}{2}$ and $v = \frac{i(x^* - x)}{2}$. Then x=u+iv. Clearly u, v are hermitian since $x + x^*$ is hermitian and also $\frac{i(x^* - x)}{2}$ is hermitian. The uniqueness of the representation is yet to be proved. If u + iv = x is another representation then put w = v - v. Then both w and iw are hermitian and $iw = (iw)^* = -iw^* = -iw$ i.e. iw + iw = 0 i.e. 2iw = 0 (ie) v = v. Since v = v, u = u

Hence the representation is unique.

- b) Clearly $e^* = ee^*$.. But ee^* is self adjoint. Hence e^* is self adjoint. Hence e is self adjoint.
- c) Since x is invertible $\exists x^{-1} s.t. x x^{-1} = e$

Now
$$(x x^{-1})^* = (x^{-1})x^* = e^* = e$$
 (: e is self adjoint)

 $(x^{-1})^*$ is the inverce of x^*

But $(x^*)^{-1}$ is the inverse of x^* and hence $(x^{-1}) = (x^*)^{-1}$

- d) Let $\lambda \in \sigma(x)$. Then $(\lambda e x)$ is not invertible. Hence $(\lambda e x)^*$ is not invertible (ie) $(\overline{\lambda}e x^*)$ is not invertible. Hence $\overline{\lambda} \in \sigma(x^*)$ the converse follows analogously.
- **3.Definition**: If A is a Banach algebra with an involution *, which satisfies the $||xx^*|| = ||x||^2$ for every $x \in A$ then A is called a B* algebra.
- **3.1.Theorem :** If A is a semi simple commulative Banach algebra, then involution on A is continuous

Proof: Let h be a homomorphism of A

Define
$$\emptyset(x) = \overline{h}(x^*)$$
,

Then $\emptyset(x+y) = \overline{h}[x+y]^* = \overline{h}(x^*+y^*)$

$$= \overline{h}(x^*) + \overline{h}(y^*) = \emptyset(x) + \emptyset(y)$$

$$\emptyset(\alpha.x) = \overline{h}[(\alpha,x)^*] = \overline{h}(\overline{\alpha}x^*)$$

$$= \frac{\overline{h}(\overline{\alpha},x^*)}{\overline{h}(x^*)}$$

$$= \alpha \cdot \overline{h}(x^*)$$

$$= \alpha \phi(x)$$
Similarly $\emptyset(xy) = \overline{h}((xy)^*) = \overline{h}(y^*x^*)$

$$= \frac{\overline{h}(y^*x^*)}{\overline{h}(y^*)}$$

$$= \overline{h}(y^*)\overline{h}(x^*)$$

$$= \emptyset(y).\emptyset(x) = \emptyset(x).\emptyset(y)$$

Hence \emptyset is a complex homomorphism on A. Then \emptyset is continuous. For, suppose $x_n \to x$, and $x_n^* \to y$ in A

Then
$$\overline{h}(x^*) = \emptyset(x) = Lim\emptyset(x_n) = Lim\overline{h}(x_n^*) = \overline{h}(y)$$

This is true for every $h \in \Delta$.

Since A is semisimple $x^* = y$. Hence $x \rightarrow x^*$ is continuous by closed graph theorem.

3.1.Corollary

A is a B* algebra, iff
$$||x^*|| = ||x|| \forall x \in A$$

and
$$||xx*|| = ||x|| ||x|| *$$

For, we have
$$||x||^2 = ||xx^*|| \le ||x|| ||x^*||$$

Hence
$$||x|| \le ||x^*||$$
(1)

Similarly
$$||x^*|| \le ||x^{**}|| = ||x||$$
 (2)

From (1) and (2)
$$||x^*|| = ||x||$$

Now
$$||xx^*|| = ||x||^2 = ||x|| \cdot ||x|| = ||x|| ||x^*||$$

Conversely, we have that if $||x|| = ||x^*||$ for every $x \in A$ and $||xx^*|| = ||x|| \cdot ||x^*||$, then $||xx^*|| = ||x|| \cdot ||x|| = ||x|| \cdot ||$

3.2. Theorem: Gelfand-Nahnark Theorem

Suppose A is a commulative B* algebra, with maximal ideal space Δ . The Gelfand transform is then an isometric isomorphism of A onto $C(\Delta)$ which has the additional property that

$$h(x^*) = \overline{h(x)}(x \in A, h \in \Delta)$$

or equivalently, that

$$(x^*)$$
 = $\overline{\ }$

In particular, x is hermitian if and only if \hat{x} is a real function.

The above theorem is called Gelfand - Nahnark theorem

Proof:Let $u \in A$ s.t. $u = u^*$. Let $h \in \Delta$. We have to prove that h(u) is real.

Put z=u+ite for real t. If $h(u) = \alpha + i\beta$ where α, β are reals then

$$h(z) = h(u + ite) = h(u) + h(ite)$$

$$= \alpha + i\beta + it.h(e)$$

$$= \alpha + i\beta + it = \qquad \alpha + i(\beta + t)$$

$$zz^* = u^2 + t^2e \text{ so that}$$

$$\alpha^2 + (\beta + t)^2 = |h(z)|^2 \le ||z||^2 = ||zz^*|| \le ||u||^2 + t^2$$
or $\alpha^2 + \beta^2 + 2\beta t \le ||u||^2 \quad \forall t \in \text{Real}$

But this implies that $\beta = 0$. = 0. Hence h(u) is real.

If $x \in A$, then x = u + iv with $u = u^*, v = v^*$

Hence $x^* = u - iv$. Since \hat{u} and $\hat{\mathcal{G}}$ are real, we have

$$(x^*)^{\hat{}}(h) = \hat{u} - i\hat{v}](h)$$
 for every $h \in \Delta(i.e.)(x^*)^{\hat{}} = \overline{\hat{}}_x$

Thus \overline{A} is closed under complex conjugation. By Stone Weierstrass theorem is dense in $C[\Delta]$

If $x \in A$ and $y = x x^*$, then $y = y^*$. Hence $||y^2|| = ||y||^2$. By induction, we get that llymi $||y^m|| = ||y||^m$ for every $m = 2^n$.

Hence $\|\hat{y}\|_{\infty} = \|y\|$ by the spectral radius formula. Since $y = xx^*$

we have
$$\hat{y} = \hat{x}(x^*) = \hat{x} \, \overline{\hat{x}} = |\hat{x}|^2$$

Hence
$$\|\hat{x}\|_{\infty}^2 = \|y\| = \|xx^*\| = \|x\|^2$$
 or $\|\hat{x}\|_{\infty} = \|x\|$...

Thus $x \to \hat{x}$ is an isometry. Hence \bar{A} is closed in $C(\Delta)$. Since A is also dense in $C(\Delta)$, we conclude that $\hat{A} = C(\Delta)$. Hence the proof.

3.3.Theorem: If A is a commutative B* algebra which contains an element x such that the polynomials in x and x^* are dense in A. then the formula $(\Psi f)^{\hat{}} = f \circ \hat{x}$ defines an isometric isomorphism Ψ of $C(\sigma(x))$ onto A which statisfies.

$$\Psi \hat{f} = (\Psi f) * \text{for every } f \in C(\sigma(x)). \text{ More over if } f(\lambda) = \lambda \text{ on } \sigma(x) \text{ then } \Psi f = x.$$

Proof:Let Δ be the maximal ideal space of A. We know that \hat{x} is a continuous function on Δ . The range of \hat{x} is $\sigma(x)$. Suppose $h_1, h_2 \in \Delta$ and $\hat{x}(h_2)$, then $h_1(x) = h_2(x)$ and hence $h_1(x^*) = h_2(x^*)$ by the previous theorem. If P is any polynomial in x and x^* , then $h_1(P) = h_2(P)$ since h_1 , and h_2 , are homomorphisms. By hypothesis, the elements of the form $P(x,x^*)$ are dense in A and since h_1 , and h_2 , are continuous we have $h_1(y) = h_2(y)$ for every $y \in A$. Hence $h_1 = h_2$. Hence we have proved that $\hat{x}(h_1) = \hat{x}(h_2)$ for every $y \in A$. Hence $h_1 = h_2$, (i.e.) \hat{x} is 1-1. Since \hat{x} is continuous and onto $\sigma(x)$ and |-| we have that x is homeomorphism of Δ onto $\sigma(x)$ (By Vadiyanatha swamy's theorem). The mapping $f \to f \circ \hat{x}$ is therefore an isometric isomorphism of $C(\sigma(x)) \to C(\Delta)$ which preserves complex conjugation.

By the previous theorem, each fox is the Gelfand tranform of a unique elements of A, which we denote by Ψf and which satisfies $\|\Psi f\| = \|f\|_{\infty}$ [Since we have that $(x^*)^{\hat{}} = \hat{x}$ by the previous theorem]. We have $\Psi \hat{f} = (\Psi(f))^*$. If $f(\lambda) = \lambda$, then $f \circ \hat{x} = \hat{x}$ so that we have $(\Psi \hat{f}) = \hat{x}(ie)\Psi f = x$.

We are interested in knowing the existence of square roots in a Banach algebra. The following theorem is one in that direction.

3.4.Theorem: Suppose A is a commutative Banach algebra with an involution. If x is a self adjoint element of A and if $\sigma(x)$ contains no real number $\lambda \le 0$, then there exists $y \in A$ with $y^2 = x$ and $y = y^*$.

Proof:Let R denote the non positive real numbers and let $\Omega = C - R^-$.. There exists a holomorphic function $f \in H(\Omega)$ such that $f^2(\lambda)$ and f(1) = 1. Since $\sigma(x) \subset \Omega$, we can define $y \in A$ as

$$y = \hat{f}(x) = \frac{1}{2\pi i} \int_{\Gamma} f(\lambda) (\lambda e - x)^{-1} d\lambda$$

Where Γ is any contour that surrounds $\sigma(x)$ in Ω . Then it can be proved that $y^2 = x$ [For a proof the student is referred to Defn and theorem of "Functional Analysis" by Rudin. This is the required y and $y^* = y$. To prove $y^*=y$ we need what is called Runge's theorem in complex analysis.

Since Ω is simply connected 'Runges'. Theorem gives polynomials P, that converge to funiformly on compact subsets of Ω . Define Q_n , by

 $2Q_n(\lambda) = P_n(\lambda) + \overline{P_n(\lambda)}$. Since $f(\overline{\lambda}) = \overline{f(\lambda)}$ the polynomials $Q_n \to f$ in the same manner [(ie) uniformly on compact sets]

Define $y_n = Q_n(x).(n = 1, 2, 3,)$ By definition, the polynomials Q_n have real coefficients. Since $x = x^*$, if follows that $y_n = y_n^*$

The element $y = \lim_{n \to \infty} y_n$, and hence $y = y^*$ if f^* is continuous. Even if f^* is not assumed to be continuous we can give a different argument to prove that $y = y^*$ as follows.

Let R be the radical of A. Let $\pi: A \to A \setminus R$ be the quoteint map. Define an involution in A/R by

$$[\pi(a)]^* = \pi(a^*)$$
 for $a \in A$

If a is heremitian, then so is it $\pi(a)$

Since π it is continuous, $\pi(y_n) \to \pi(y)$

Since A/R is isomorphic to A. A/R is semi simple and therefore every involution in A/R is continuous. Hence $\pi(y)$ is hermitian. Hence $\pi(y-y^*)=0$ (ie) $y-y^*$ is in the radical of A.

Now we can write y = u + iv where u and v are hermitian. Since $y - y^* \in R$, hermitian v belongs to the radical of A. Since $x = y^2$ we have $x = u^2 - v^2 + 2iuv$.

Let h be a complex homomorphism on A. Since v is in the radical of A, h(v) = 0. Hence $h(x) = [h(u)]^2$ By luypothesis $0 \notin \sigma(x)$. Hence $h(x) \neq 0$. Hence $h(x) \neq 0$. This is true for every $h \in \Delta(ie)u$ is invertible.

Since x=x*

and since $x = u^2 - v^2 + 2iuv$, we have that uy = 0

Since $v=u^{-1}$ (u v) we have that $v = u^{-1}.0 = 0$

Hence y = u and hence $y^* = u^*$ But u is hermitian and hence $y^* = y$

REFERENCES

- 1. Dudley, R. M. (2002). Real Analysis and Probability (2 ed.). Cambridge University Press. ISBN 0-521-00754-2.
- 2. Folland, Gerald B. (1999). Real Analysis: Modern Techniques and their Applications. Wiley. ISBN 0-471-31716-0.
- 3. Royden, H. L. (1988). Real Analysis. Prentice Hall. ISBN 0-02-404151-3.
- 4. Carothers, N. L. (2000). Real Analysis. Cambridge University Press. ISBN 0-521-49756-6.
- 5. Strichartz, Robert (2000). The Way of Analysis. Jones and Bartlett. ISBN 0-7637-1497-6.